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ABSTRACT: In this paper, an artificial neural network
(ANN) is first applied to perovskite catalyst design. A series
of perovskite-type oxides with the LaxSr1−xFeyCo1−yO3 general
formula were prepared with a sol−gel autocombustion method
under different preparation conditions. A three-layer percep-
tron neural network was used for modeling and optimization
of the catalytic combustion of toluene. A high R2 value was
obtained for training and test sets of data: 0.99 and 0.976,
respectively. Due to the presence of full active catalysts, there
was no necessity to use an optimizer algorithm. The optimum
catalysts were La0.9Sr0.1Fe0.5Co0.5O3 (Tc = 700 and 800 °C and
[citric acid/nitrate] = 0.750), La0.9Sr0.1Fe0.82Co0.18O3 (Tc = 700 °C, [citric acid/nitrate] = 0.750), and La0.8Sr0.2Fe0.66Co0.34O3 (Tc
= 650 °C, [citric acid/nitrate] = 0.525) exhibiting 100% conversion for toluene. More evaluation of the obtained model revealed
the relative importance and criticality of preparation parameters of optimum catalysts. The structure, morphology, reducibility,
and specific surface area of catalysts were investigated with XRD, SEM, TPR, and BET, respectively.
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1. INTRODUCTION

According to test method D3960 of the American Society for
Testing and Materials, VOCs are organic compounds having a
vapor pressure larger than 13.3 Pa at 25 °C.1 Volatile organic
compounds (VOCs) are an issue of major concern for many
scientists worldwide because of their contribution to major
environmental problems such as stratospheric ozone depletion,
photochemical smog formation, global warming, and an odor
nuisance.2 In addition, both VOCs and their degradation
products may be important in the epidemiology of respiratory
disorders and cancer.3 Toluene is a common VOC used as raw
material in manufacturing many organic compounds and also
used as a solvent in several industries. This compound has a
toxic nature and causes mild macrocytic anemia in people
working with it.4 Catalytic oxidation is one of the effective and
economic techniques for the treatment of a low concentration
VOC stream. Metal oxide catalysts are alternatives for noble
catalysts. Among the metal oxides, perovskite-type mixed oxides
due to their high catalytic activity in the oxidation of VOCs and
thermal stability in the high temperature range of operation are
of importance. These materials are represented by the ABO3
general formula, where A is lanthanide and/or alkaline earth
metal ion and B is a transition metal ion. Both A and B cations
can be partially substituted, leading to multicomponent oxides

(A1−xA′xB1−yB′yO3).
5,6 Partial substitution of the A site causes

lattice defects and abnormal valences in B site cations that
usually enhance catalytic activity. The B-site partial substitution
brings about synergistic effects and influences the stability of
the crystalline structure.5

Catalyst design is a tedious and a complex process involving
many steps, many variables, and complex interactions among
these variables that make the experimental studies quite
expensive and time-consuming.7 It is possible to obtain an
efficient catalyst for a chemical reaction by catalyst design.8 In
catalyst design, components of the catalyst and synthesis
conditions are selected through a systematic method by using
the available knowledge and concepts of catalysis.9 Two
different methods can be recognized for catalyst design: the
traditional method and the computer-aided-design catalyst
(CADC) method. In the traditional method, the main
components of the catalyst are selected by considering the
reaction mechanism, and subsequently the best catalyst is
determined from several experiments. So a lot of money,
manpower, time, and material resources are necessary to obtain
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a suitable catalyst with the traditional method. In addition, it is
impossible to design some highly efficient catalysts for a new
reaction in a short time through traditional catalyst design
methods. According to the rapid development of computer
science, chemists found the chance to use the CADC method
for catalyst design. In comparison with the traditional method,
the CADC method does not need to know the catalytic
mechanism completely and could design better catalysts in a
short time with fewer experiments. In the past 20 years,
computer-aided catalyst design with ANN has been reported to
design catalysts for different processes by some researchers.
Artificial neural networks (ANNs) are computing systems that
are based on the concepts of neurons in biology.10 Hou et al.11

in 1997 used ANN for designing a catalyst for propane
ammoxidation. Huang et al.12 in 2001 developed an improved
back-propagation network to simulate the relations between
components of the catalyst and aspects of catalytic perform-
ance, which include C2 selectivity and conversion of methane.
Serra et al.13 in 2003 used ANNs for modeling the kinetics of
catalytic hydroisomerization of different n-paraffins. They
proposed a novel methodology for modeling catalytic data
employing already-trained neural networks by using exper-
imental results from the catalytic reactions. Baumes et al.14 in
2004 used ANNs to predict performances of catalysts for the
water gas shift reaction. This search showed that ANNs used as
a classifier tool within the course of an evolutionary strategy are
high performing and well suited for high throughput
heterogeneous catalysis. Izadkhah et al.15 in 2012 coupled a
neural network model with a genetic algorithm to design and
optimize bimetallic ZSM5 supported catalysts for catalytic
oxidation of volatile organic compounds. Niaei et al.16 in 2012
designed a modified H-ZSM-5 catalyst for catalytic conversion
of methanol to gasoline range hydrocarbons (MTG) by using
the neuro-genetic approach. The aim of this work is modeling
and optimization of preparation conditions of the catalyst. In
the present study, the nanostructured LaxSr1−xFeyCo1−yO3
perovskite mixed oxides, prepared with the sol−gel combustion
method, were used as novel catalysts for catalytic oxidation of
toluene. The structure, morphology, reducibility, and specific
surface area of catalysts were investigated with XRD, SEM,

TPR, and BET, respectively. According to the complex
interaction among catalyst components and absence of a clear
reaction mechanism for toluene combustion over perovskite,
artificial neural networks were used for modeling the
relationship between composition and catalyst activity. To
minimize the repetitious trial-and-error process and for
implementation of experiments in a random manner, CCD
(Central Composite Design) as an experimental design method
with four factors (La mole fraction, Fe mole fraction,
calcinations temperature (Tc), and molar ratio of citric acid
to the total metal nitrates) was used. All catalysts based on
experimental design array were prepared and tested in three
different temperatures (220, 260, and 300 °C), so the required
database for ANN modeling was produced. A three-layer
perceptron neural network was used to model the relationship
between catalytic performances and catalyst design parameters.
The obtained ANN model was used to determine the relative
importance of design parameters. Optimum catalysts (catalysts
with full activity) were selected, and more investigation was
done on them. The present paper is the first report applying
ANN for modeling the composition−activity relationship in
perovskite catalysts for the toluene combustion process.

2. EXPERIMENTAL PROCEDURES

2.1. Synthesis of Catalyst. The perovskite-type oxides
were prepared by sol−gel auto combustion. Analytical grade
La(NO3)3·6H2O, Sr(NO3)2, Fe(NO3)3·9H2O, Co(NO3)2, and
citric acid (C6H8O7·H2O) (Merck) were used as raw materials.
Stoichiometric amounts of mentioned metal nitrates, based on
experimental design array, were dissolved together in a
minimum amount of distilled water to get a clear solution
(Sol). The solution was heated on a hot plate; when the
temperature of the solution was raised to 70 °C, an appropriate
amount of citric acid monohydrate was added to the solution.
The molar ratio of citric acid to the total nitrates in the solution
mixture was kept at the quantity that the experimental design
proposed. The solution was stirred vigorously and heated at 80
°C for dehydration. During the dehydration process, a
polycondensation reaction happened between citric acid and
nitrates. At last, a sticky gel was obtained and burned by heating

Figure 1. Schematic of the setup for catalytic oxidation of VOCs.
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at 200 °C on a hot plate and turned into a dark powder. The
powder was calcined in two steps. First, powder was calcined at
600 °C for 1 h, and then it was calcined under a temperature
proposed by experimental design for 4 h.
2.2. Catalyst Characterization. X-ray diffraction (XRD)

studies were carried out on a Siemens D500 diffractometer
working with a Kα line of copper (λ = 0.154 nm) at a scan rate
of 4° min−1. Measurements of the samples were carried out in
the 2θ range of 15−67°. The mean crystal sizes were estimated
using the Scherer equation, D = Kλ/β cos θ, where K = 0.89, λ
=0.15418 nm, β is the half peak width of the X-ray reflection,
and θ is the diffraction angle.
For temperature-programmed reduction (TPR) experiments,

a chembet-3000 apparatus was used. The H2-TPR was carried
out under a 10 mL min−1 flow of 5% H2 in Ar, heating 10 °C
min−1 up to 1000 °C.
Furthermore, the shape and size of the synthesized particles

were determined via scanning electron microscopy (SEM) with
a Hitachi s-4200 instrument with precoating samples with gold.
Specific surface areas were determined on a chembet-2400

apparatus with nitrogen as the adsorbate by a single point BET
method.
2.3. Evaluation of Catalytic Performance. The sche-

matic view of the setup used for catalytic study of VOC
combustion is shown in Figure 1. Catalytic oxidation reactions
were carried out in a conventional fixed bed reactor under
atmospheric pressure and at different temperatures (220, 260,
and 300 °C). The total flow rate through the reactor was set at
100 cm3 min−1. The VOC-laden air stream at a fixed
concentration as feed to the reactor was generated by bubbling
the nitrogen gas at a suitable flow rate through the VOC
saturators. The catalytic activity tests and the preparation of
aged catalyst samples were performed in a 0.008-m-inner-
diameter and 0.6-m-long cylindrical quartz reactor heated with
an electrical furnace. The gas hourly space velocity (GHSV)
was measured under inlet conditions of about 6000 h−1. The
catalytic reactions were performed under steady state
conditions in which all process variables remained constant
with time at any given point in the reactor before any
measurement was made. The feed and product gases were
analyzed using a Shimadzu 2010 gas chromatograph (GC)
equipped with a FID detector and a CBP1 column of shimadzu
columns (l = 25 m, i.d. = 0.25 mm).

3. MODELING DETAIL
3.1. Design of Experiment Using Central Composite

Design. To reduce the number of experiments and to arrange
the experiments with various combinations of independent
variables, a central composite design (CCD) was employed to
design the experiments. The effect of the following four factors
(independent variables) on the conversion of toluene
(response) was studied: the mole fraction of La, the mole
fraction of Fe, calcination temperature (°C), and molar ratio of
citric acid to the total nitrates in the solution mixture. The
ranges of the independent variables were determined by
considering the literature.17,18 The ranges and levels used in the
experiments are given in Table 1.
The experimental design matrix resulted from the CCD

consists of 31 sets of coded conditions expressed in natural
values. Experiments include seven replications at the center
point, eight axial points, and 16 factorial points.
3.2. Neural Networks. The artificial neural networks used

in this work were created by writing computer codes in

MATLAB 7.2 software. For modeling the catalyst performance,
a multilayer perceptron (MLP) was developed. The MLP
neural networks are the most common networks of the feed
forward kind, so signal transmission between neurons is only
possible from a lower layer to a higher layer. According to the
literature, these networks have been used to estimate
relationships between catalytic performance and chemical
composition, physical properties, and reaction conditions.19−21

The MLP neural networks consist of a number of layers of
neurons including an input layer, an output layer, and one or
more hidden layers between the input and output layers.22 The
number of neurons in the input and output layers corresponds
to the number of independent variables and the number of
dependent variables (responses), respectively. In this study, the
input layer contained five neurons including mole fraction of
La, mole fraction of Fe, calcination temperature (°C), and
molar ratio of citric acid to total nitrates in the solution mixture
as catalyst preparation variables and the reaction temperature
(TR) as an operational variable. There was one output neuron
in the output layer that was the conversion of toluene, which
represented the activity of the catalyst. Indeed, there is no
general guideline to determine the appropriate number of
hidden layers and their neurons; however, theoretically the
MLP with one hidden layer is enough to solve any problem that
MLP with two hidden layers can solve.23 Therefore, a MLP
with one hidden layer was used for model development. The
optimum number of neurons should be used in a hidden layer
in order to reach the model which simulates experimental
results best. It is well-known that a network with few numbers
of neurons cannot model the relationship between the input
and the output parameters. On the other hand, a network with
too many neurons may cause overfitting. To determine the
optimum number of hidden layer neurons, training of the
model started with a small number of neurons and then
continued by adding neurons to the hidden layer until the best
model without overfitting was obtained. All attempts were
repeated five times with the results being stated as an average of
five turns. The standard deviation of error value was used to
evaluate and compare the statistical fitness of various neural
networks.
The tan-sigmoid (hyperbolic tangent sigmoid) was used as

the activation function of the hidden layer, because it is a good
choice for many nonlinear functions (eq 1). The activation
function used for the output layer was a linear function (eq 2).

=
+ −

f x
x

( )
1

1 exp( ) (1)

=f x x( ) (2)

Table 1. Independent Variables and Their Levels in the
Experimental Design

levels

independent
variables −2 −1 0 1 2

mole fraction of
lanthanum

0.6 0.7 0.8 0.9 1

mole fraction of
iron

0.34 0.5 0.66 0.82 0.98

calcination
temperature
(°C)

650 700 750 800 850

[citric acid]/[total
nitrate]

0.075 0.3 0.525 0.750 0.975
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Standard back-propagation (BP) is the most popular training
algorithm for minimizing the error function for an MLP neural
network, and there are several different BP training algorithms.
In this study, the gradient descend algorithm (traingdm) was
used for training as a neuron weights optimizer.
It should be noted that before training, input data were

normalized into the range of −1 to +1 according to eq 3, but
target values were used without normalizing.

=
−

−x
X

X X
2

1i
i

max min (3)

where Xi is the natural value of the ith variable, xi is the
dimensionless coded value of the ith variable, and Xmax and Xmin
are the highest and the lowest limits of the ith variable,
respectively.
Relative importance of the input parameters (catalyst

preparation and operational variables), which indicates the
effect of each input parameter on the output factor (toluene
conversion), was calculated using eq 4.24
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∑ ∑
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Ss shows the relative significance of the sth parameter. wij is the
weight that connects the ith input point to the jth neuron of the
hidden layer. ujk is the weight that connects the jth hidden layer
neuron to the kth output neuron. m is the number of input
neurons. n is the number of neurons of the hidden layer, and k
is the number of outputs.
Optimum catalysts which showed full activity in toluene

combustion were selected and underwent more deliberation.
The impact of each preparation parameter on optimum catalyst
performance was investigated, and also, the critical value of
preparation parameters was determined.

4. RESULTS AND DISCUSSION
4.1. Toluene Conversion Modeling. At first, a linear

model and Response Surface Area (RSM) as a DoE method
were used for modeling the relationship between catalyst
preparation parameters and activity in perovskite catalysts. Low
R2 values (Table 2) for both the linear model and obtained

model of RSM indicates the inability of the mentioned models
to model the parameter space of perovskite catalyst synthesis.
This conclusion can be verified by studying the ANN model,
which shows modeled parameter space is very complicated and
has various volcano type behaviors in almost the whole of
parameter space. So the only way to model such a complicated
parameter space is intelligent methods such as ANN, which is
able to model the complicated parameter spaces. Indeed
utilization of ANN to model simple parameter spaces is
meaningless because it makes the problem more complicated.
On the other hand, utilization of linear model or classical DoE
for modeling of complicated parameter spaces is not reasonable

because it cannot model the complicated parameter spaces with
acceptable error. Therefore, perovskite catalyst synthesis
parameter space, as a very complicated parameter space, cannot
be modeled using simple methods such as linear model,
classical DoE and so forth and should be modeled using more
effective methods such as ANN.
The experimental toluene conversion at various temperatures

on the CCD proposed catalysts was used as a database for the
neural network model (Supporting Information). It should be
noticed that the average of toluene conversion in repeated
central points was used for modeling. This database involves 75
patterns, and each pattern consisted of six features (four
features for preparation conditions, one feature for reaction
temperature, and one feature for conversion of toluene as
output).
Two main steps can be recognized in the ANN model

development: determination of optimum topology and
validation of the model. For modeling, the data are randomly
divided into two sets: a training set and a test set. The training
set is used in network training and weights calculation, and the
test set is used to validate the model. In this study, 84% of the
total data were used to estimate the neural network’s
parameters in the training phase and 16% of the total data
were used as test data to validate the networks.

4.2. Topology Selection. For selection of the best neural
network model, many network topologies with different
numbers of neurons in the hidden layer were tested. First a
network with two neurons in a hidden layer was selected for the
starting phase, and then, the network size was enlarged by
adding neurons to the hidden layer. Figure 2 reveals that
standard deviation of the error for networks with a low number
of neurons in the hidden layer is large; it means that these
networks cannot model the relationship between input and
output parameters. On the other hand, networks with too many
neurons in the hidden layer have the risk of overfitting, so the
best topology is the networks with sufficiently low STD of
error. As can be seen in Figure 2, by enlarging the model, the
error of the model decreases at a fair rate, but after reaching a
certain number of neurons in the hidden layer, the decreasing
rate of error of the model approaches zero. After this point, the
adding of a neuron to the hidden layer does not decrease the
error of the model significantly, but it can cause overfitting of
the model to the training data. In this work, 20 neurons in the
hidden layer were considered as the optimum point, based on
Figure 2.
An overview of the structural organization of the neural

network used in this study can be seen in Figure 3. The
optimum topology of the network includes five input variables,
20 neurons in the hidden layer, and an output variable
(response) which is shown as (5, 20, 1). Each neuron (shown
by the circle in the figure) in a certain layer is connected to
every single neuron in the next layer. The connection between
neurons is possible through links with an adjustable connection
weight, which are adjusted during the training phase. In fact,
weights represent the strength of the link between two neurons.
A neuron receives incoming signals from each neuron of the
previous layer and calculates the sum of the incoming signal’s
weights and then transmits it through the transfer function.

4.3. Model Validation. Figure 4 presents predicted toluene
conversion versus experimental values for both training and test
data. As seen, both train and test data are distributed well
around y = x line with high R2 values; 0.99 and 0.976 for
training and testing data, respectively. Resulted values for R2

Table 2. R2 Values for the Linear Model and Model
Obtained from RSM

model R2

linear model 5%
RSM (220 °C) 51.4%
RSM (260 °C) 60.5%
RSM (300 °C) 57.8%
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indicate that the neural network model with selected topology
is quite successful in predicting data. The high R2 value for
testing data is remarkable; because it shows that neural network
can predict the toluene conversions for conditions that are not
used during training and also it can prove that model does not
overfit train data.
4.4. Effect of Design Parameters. The input significance

analysis was carried out to determine the relative importance of
input factors (catalyst preparation and operational variables) on
toluene conversion. It was performed on the basis of the ANN
model using the weights of neurons in hidden and output layers
(eq 4). In fact, all input factors have a remarkable effect on
toluene conversion, and none of them could be underestimated.
As seen in Figure 5, reaction temperature as an operational
parameter has the largest significance on catalyst performance,
and among the preparation parameters, the ratio of citric acid
to total nitrates is the most effective one, and calcination
temperature has the lowest effect on the output parameter.

4.5. Optimum Catalysts. Normally, the neural network
can be optimized by various optimizers such as a genetic
algorithm to find the input variables maximizing toluene
conversion. However, it was not necessary in the present case
due to the presence of a full active catalyst at the minimum
reaction temperature. Table 3 indicates the optimal catalysts,
catalysts with 100% conversion.

4.6. Impact of Preparation Parameters on Optimum
Catalyst Performance. To study the effect of preparation
conditions on the performance of optimum catalysts, toluene
conversion percentage (obtained model prediction) was plotted
versus each preparation parameter while keeping the other
parameters at their optimum values. The experimental values
were shown in each plot by circle symbols. These plots for
optimum catalyst no. 1, La0.9Sr0.1Fe0.5Coo.5O3 (Tc = 800 °C and
[mole citric acid/mol nitrate] = 0.3), are presented in Figure 6.
The conversion of toluene is plotted for LaxSr1−xFe0.5Coo.5O3 in
Figure 6a for studying the effect of La and Sr molar fractions; as
seen in Figure 6a, high activity for the catalyst is observed when

Figure 2. Standard deviation of error versus number of neurons in the hidden layer.

Figure 3. Neural network topology, inputs and outputs connected through a hidden layer.
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the mole fraction of lanthanum approaches around 0.9 (the
mole fraction of strontium equals 0.1). Indeed, by introducing a
bivalent strontium ion into the A site of perovskite, metal ions
in the B site can get abnormal valences. These ions tend to be
reduced by releasing oxygen from the lattice of perovskite
(oxygen vacancies are formed) and cause an improvement in
perovskite reducibility.5 Figure 6b demonstrates the conversion
of toluene versus the variations of Fe mole fraction for
La0.9Sr0.1FeyCo1−yO3; the figure shows that maximum con-
version achieves a value in the range of 0.45−0.8 mole fraction
of iron. The combination of certain amounts of iron and cobalt

ions at the B site improves catalyst activity, which can be
attributed to the synergistic effect between iron and cobalt ions.
In addition, according to model prediction, when the B-site of
perovskite is occupied by cobalt ions, the activity of the catalyst
is better than perovskite with iron ions in the B site. This
prediction is in agreement with the other research.6 It has been
reported that regardless of elements at the A site, the catalytic
activity of perovskite for oxidation is mainly determined by the
type of metal at the B site.5 The low activity of the
La0.9Sr0.1Fe0.5Co0.5O3 catalyst for calcination temperatures
above 800 °C can be ascribed to low specific area (Figure
6c). As can be seen in Figure 6d, the highest conversion is
reached at 0.2 and 0.7 [citric acid]/[total nitrate] for
La0.9Sr0.1Fe0.5Co0.5O3.
As mentioned before, there is a good agreement between the

model prediction and the experimental data points. This is
additional evidence for success of the neural network modeling.
The parameter that its variation mainly affects catalyst

performance is recognized as a main and important parameter.
The relative importance of input parameters for each optimum
catalyst was calculated using eq 5.

=
∑ =

R. I
STD

STDi
i

i
s

i1 (5)

where R.Ii is the relative importance of the ith parameter, STDi
is the standard deviation of conversion while the ith parameter
changes from a minimum to maximum amount and other
parameters are fixed in their optimum values, and s is the
number of parameters, which equals to 4 in this study. In this
case, the mole fractions of lanthanum and iron are the most
important parameters (Figure7). In the other words, their
amounts mainly affect the activity of catalyst.
The critical value of preparation parameters was determined

using eq 6. The critical parameter is defined as a parameter for
which a small deviation from the optimum amount causes a
significant change in catalyst performance. Identification of the

Figure 4. Model prediction versus experimental values for optimum topology (optimum topology: 5, 20, 1).

Figure 5. Relative significance of input parameters.

Table 3. Optimum Catalysts

catalyst
number catalyst

calcination
temperature (°C)

[citric acid]/
[total nitrate]

1 La0.9Sr0.1Fe0.5Co0.5O3 800 0.3
2 La0.9Sr0.1Fe0.5Co0.5O3 700 0.3
3 La0.8Sr0.2Fe0.66Co0.34O3 650 0.525
4 La0.9Sr0.1Fe0.82Co0.18O3 700 0.750
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critical parameter is especially important for scaleup purposes
and large scale production in which the critical parameters
should be controlled carefully. In addition, with evaluation of
criticality and catalytic behavior of samples, it is possible to
change synthesis parameters to less critical values. For example,
[citric acid]/[total nitrate] = 0.3 is a critical parameter in the
synthesis of optimum catalyst no. 2. As seen in Figure 9d, a
small deviation to lower amount significantly decreases the

catalytic activity. By changing the amount of the mentioned
critical parameter to a higher amount, i.e., 0.4, while the catalyst
remains at high performance, the criticality of parameter
decreases.

=
∑

±

±
RC

STD

STDi
i

i i

(op 10%)
4

(op 10%) (6)

Figure 6. Conversion of La0.9Sr0.1Fe0.5Co0.5O3 (Tc = 800 °C and [citric acid]/[total nitrate] = 0.3) versus preparation parameters. In each plot, other
variables were fixed at their optimum values. Optimum values (experimental values) are shown with circle markers.

Figure 7. Relative significance of preparation parameters for La0.9Sr0.1Fe0.5Co0.5O3 (Tc = 800 °C and [citric acid]/[total nitrate] = 0.3).
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In eq 6, RCi is the relative criticality of parameter i, STDi(op±10%)
is the standard deviation of conversions while the parameter i
changes from optimum point −10% (maxi − mini) to optimum
point +10% (maxi − mini). Maxi and mini represent the
maximum and minimum amounts for parameter i that were
determined in the experimental design step, respectively. As
seen in Figure 8, the most critical parameter for this optimum
catalyst is the ratio of citric acid to total nitrate.
The effects of preparation parameters on the performance of

a second optimum catalyst (Table 3) are plotted in Figure 9.
The effect of lanthanum mole fraction on the performance of
LaxSr1−xFe0.5Co0.5O3 is plotted in Figure 9a. Figure 9a indicates
that toluene conversion has been improved significantly by the

Sr substitution. This catalyst shows high catalytic activity when
the mole fraction of iron is lower than 0.5 in
La0.9Sr0.1FeyCo1−yO3 (Figure 9b). Some intermediate levels of
molar citric acid to molar nitrate (0.3−0.6) seem to be more
suitable for this catalyst with the La0.9Sr0.1Fe0.5Co0.5O3 formula
(Figure 9d). According to Figure 9c, calcination at temper-
atures above 800 °C can promote sintering and subsequently
decrease the activity of the catalyst.
Similar results can be seen for the two other optimum

catalysts; Sr substitution improved the catalyst activity in
toluene combustion (Figures 10a and 11a). Figures 10a and 11a
show the catalytic activity of LaxSr1−xFe0.66Co0.34O3 and
LaxSr1−xFe0.82Co0.18O3 for toluene combustion, respectively.

Figure 8. The critical value of preparation parameters for La0.9Sr0.1Fe0.5Co0.5O3 (Tc = 800 °C and [citric acid]/[total nitrate] = 0.3).

Figure 9. Conversion of La0.9Sr0.1Fe0.5Co0.5O3 (Tc = 700 °C and [citric acid]/[total nitrate] = 0.3) versus preparation parameters. In each plot, other
variables were fixed at their optimum values. Optimum values (experimental values) are shown with circle markers.
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Due to the synergistic effect between iron and cobalt cations,
the coexistence of cobalt and iron in the perovskite structure
enhanced the catalyst performance (Figures 10b and 11b). In
addition, because of sintering at high temperatures, the catalyst
activity decreased as the calcination temperature increased
(Figures 10c and 11c). The molar ratio of citric acid to total
nitrates has a volcano shaped effect on catalyst performance
(Figures 10d and 11d).

Figure 12 shows the relative criticality of preparation
parameters calculated by using eq 6 for the other optimum
catalysts. The critical parameter for each optimum catalyst has
been determined in Table 4.

4.7. Characterization. Among the 31 catalysts suggested
by CCD, the structure of five catalysts with different
preparation conditions was investigated using the X-ray
diffraction method. A comparison of XRD patterns with

Figure 10. Conversion of La0.8Sr0.2Fe0.66Co0.34O3 (Tc = 650 °C and [citric acid]/[total nitrate] = 0.525) versus preparation parameters. In each plot,
other variables were fixed at their optimum values. Optimum values (experimental values) are shown with circle markers.

Figure 11. Conversion of La0.9Sr0.1Fe0.82Co0.18O3 (Tc = 700 °C and [citric acid]/[total nitrate] = 0.750) versus preparation parameters. In each plot,
other variables were fixed at their optimum values. Optimum values (experimental values) are shown with circle markers.
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JCPDS 48-0123 and JCPDS 37-14983 charts indicated that
catalysts were single-phase perovskite oxides. The average
crystal sizes of the perovskites were calculated using the
sharpest characteristic peak (2θ of 32.9°) through the Scherer
equation, and the results are presented in Table 5.

The size and morphology of perovskite catalysts were
investigated by scanning electron microscopy (SEM) as shown
in Figure 13. It is observed that the morphologies of particles
are spherical, and the particles of the catalysts are within the
nanoscale (≤100 nm).

The H2-TPR studies were carried out to investigate the effect
of substitution amount of the cobalt ion in the B site and partial
substitution of Sr2+ in the A site on the reducibility of catalysts.
Also, the H2-TPR profiles were used to interpret the observed
catalytic behavior and as a confirmation for model prediction.
Regarding the H2-TPR profile of LaFe0.66Co0.34O3 (Figure

14a), one peak centered on 480 °C and a shoulder on the low
temperature side of the mentioned peak are observed relating
to the reduction of Co3+ to Co2+ and Fe4+ to Fe3+, respectively.
In the TPR profile of Lao.8Sr0.2Fe0.66Co0.34O3, the first peak
(329 °C) overlaps with the second peak (383 °C), and they are
attributed to the reduction of Fe4+ to Fe3+ and Co3+ to Co2+,
respectively (Figure 14b). Apparently, with the doping of
strontium, the intensity of the Fe4+ reduction peak increased,
indicating the higher content of Fe4+, and the reduction peak of
Co3+ shifted toward lower temperature; i.e., the addition of
strontium at the A site of the LaFe0.66Co0.34O3 increased the
reducibility of the catalyst. The obtained result is in agreement
with experimental data (Supporting Information). In addition,
H2-TPR profiles confirmed the prediction of the model about
the presence of strontium in a perovskite structure.
As seen from the H2-TPR profile of La0.8Sr0.2Fe0.34Co0.66O3

(Figure 14c), the first peak overlaps with a second peak, and
their highest temperatures are 346 and 358 °C. The mentioned
peaks are assigned to the Co3+ to Co2+ and Fe4+ to Fe3+

reductions, respectively. The reduction temperatures of Fe4+

and Co3+ in the La0.8Sr0.2Fe0.34Co0.66O3 profile did not shift
compared to those in La0.8Sr0.2Fe0.66Co0.34O3 profile, just the
intensity of both peaks increased, which is attributed to an
increase in the number of Fe4+ and Co3+. It shows that the
reduction ability of the catalyst increases as the amount of
cobalt ions in the B site increases.
Specific surface areas of the perovskites are presented in

Table 6. As seen, the specific surface areas are in the range of
5−11 m2 g−1. The change in specific surface area with
calcination temperature is an important parameter that affects
the catalytic activity. As seen in Table 6, catalyst number four

Figure 12. Critical value of La0.9Sr0.1Fe0.5Co0.5O3 (Tc = 700 °C and [citric acid]/[total nitrate] = 0.3) (a), La0.8Sr0.2Fe0.66Co0.34O3 (Tc = 650 °C and
[citric acid]/[total nitrate] = 0.525) (b), La0.9Sr0.1Fe0.82Co0.18O3 (Tc = 700 °C and [citric acid]/[total nitrate] = 0.750) (c).

Table 4. Critical Parameter in Optimum Catalysts

catalyst
number catalyst

calcination
temperature

(°C)

[citric
acid]/[total
nitrate]

critical
parameter

1 La0.9Sr0.1Fe0.5Co0.5O3 800 0.3 [citric acid]/
[total
nitrate]

2 La0.9Sr0.1Fe0.5Co0.5O3 700 0.3 [citric acid]/
[total
nitrate]

3 La0.8Sr0.2Fe0.66Co0.34O3 650 0.525 mole fraction
of
lanthanum

4 La0.9Sr0.1Fe0.82Co0.18O3 700 0.75 [citric acid]/
[total
nitrate]

Table 5. Crystal Diameter of Perovskites

catalyst
number catalyst

calcination
temperature

(°C)

[citric
acid]/[total
nitrate]

crystal
diameter
(nm)

1 La0.8Sr0.2Fe0.66Co0.34O3 750 0.525 18
2 La0.8Sr0.2Fe0.66 Co0.34O3 750 0.975 19
3 La1Fe0.66Co0.34O3 750 0.525 22
4 La0.8Sr0.2Fe0.34Co0.66O3 750 0.525 16
5 La0.8Sr0.2Fe0.66 Co0.34O3 650 0.525 12
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Figure 13. SEM image of La0.8Sr0.2Fe0.66Co0.34O3 (Tc = 750 °C and [citric acid]/[total nitrate] = 0.525) (a), La0.8Sr0.2Fe0.66Co0.34O3 (Tc = 750 °C
and [citric acid]/[total nitrate] = 0.975) (b), LaFe0.66Co0.34O3 (Tc = 750 °C and [citric acid]/[total nitrate] = 0.525) (c), La0.8Sr0.2Fe0.34Co0.66O3 (Tc
= 750 °C and [citric acid]/[total nitrate] = 0.525) (d).

Figure 14. TPR curves of LaFe0.66Co0.34O3 (Tc = 750 °C and [citric acid]/[total nitrate] = 0.525) (a), La0.8Sr0.2Fe0.66Co0.34O3 (Tc = 750 °C and
[citric acid]/[total nitrate] = 0.525) (b), La0.8Sr0.2Fe0.34Co0.66O3 (Tc = 750 °C and [citric acid]/[total nitrate] = 0.525) (c).
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with a low calcination temperature shows high catalytic activity
due to high surface area in comparison with catalyst number
one. The specific surface area decreased by introducing Sr2+ to
the perovskite structure, while the catalytic activity increased.
This result shows that there is not any direct relationship
between specific surface area and catalytic activity of perovskite.
Previously our group reported a similar result in the catalytic
combustion of toluene over perovskite catalysts.18,25 Data
indicate that specific surface area and catalytic activity of
perovskite have been increased by increasing the molar ratio of
cobalt in B sites (comparison catalysts number one and three).
Overall, considering both the catalytic activities of perovskites
and their specific surface area shows that the composition of
perovskite has more influence on the catalytic activity than
specific surface area.

5. CONCLUSION

LaxSr1−xFeyCo1−yO3 perovskite, prepared with the sol−gel
method, was used as a novel catalyst for catalytic oxidation of
toluene. For the first time, ANN was applied for modeling the
composition−activity relationship in perovskite catalysts for the
toluene combustion process. A three-layer perceptron neural
network was used for modeling and expressing the relationship
between catalytic performance and catalyst design parameters.
Due to the presence of full active catalysts, an optimizer
algorithm such as a genetic algorithm was not used. The
optimum catalysts exhibiting 100% conversion for toluene were
La0.9Sr0.1Fe0.5Co0.5O3 (Tc = 700 and 800 °C and [citric acid/
nitrate] = 0.3), La0.9Sr0.1Fe0.82Co0.18O3 (Tc = 700 °C, [citric
acid/total nitrate] = 0.750), and La0.8Sr0.2Fe0.66Co0.34O3 (Tc =
650 °C, [citric acid/total nitrate] = 0.525). In addition,
parameter space evaluation of perovskite synthesis (as pioneer
insight) is carried out by using the obtained ANN model.
Gained results are in agreement with the other experimental
reports. Regarding the model, all of the preparation parameters
have an important effect on catalyst performance.
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